Tunicamycin suppresses breast cancer cell growth and metastasis via regulation of the protein kinase B/nuclear factor-κB signaling pathway

نویسندگان

  • Xiaoli Wang
  • Wei Xiong
  • Yiyin Tang
چکیده

Breast cancer is one of the most common metastatic tumor types. Reports have suggested that Tunicamycin may inhibit the aggressiveness of cancer cells by promoting their apoptosis. In the present study, the inhibitory effects of Tunicamycin were investigated and the potential molecular mechanism underlying the Tunicamycin-inhibited growth and aggressiveness of breast cancer cells was explored. In vitro assays demonstrated that Tunicamycin significantly inhibited growth and arrested the cell cycle of breast cancer cells in a dose-dependent manner, compared with control cells. Results revealed that Tunicamycin treatment suppressed the migration and invasion of breast cancer cells. Significantly increased apoptosis of breast cancer cells was observed subsequent to Tunicamycin treatment, as compared with control cells. Mechanism analysis demonstrated that Tunicamycin inhibited the protein kinase B (Akt) and nuclear factor-κB (NF-κB) signaling pathways, whilst Akt overexpression significantly cancelled out the Tunicamycin-inhibited growth and aggressiveness of breast cancer cells, as compared with control cells. In vivo assays revealed that Tunicamycin treatment significantly inhibited tumor growth and significantly prolonged the survival of tumor-bearing mice, compared with the PBS-treated group. In conclusion, these results indicate that Tunicamycin may inhibit the growth and aggressiveness of breast cancer cells via regulation of the Akt/NF-κB signaling pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

A novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system

Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...

متن کامل

Inhibition of janus kinase 2 by compound AG490 suppresses the proliferation of MDA-MB-231 cells via up-regulating SARI (suppressor of AP-1, regulated by IFN)

Objective(s): The Janus kinase-signal transducers and activators of transcription signaling pathway (JAK/STAT pathway) play an important role in proliferation of breast cancer cells. Previous data showed that inhibition of STAT3 suppresses the growth of breast cancer cells, but the associated mechanisms are not well understood. This study aims to investigate the effect and associated mechanisms...

متن کامل

Protosappanin A protects against atherosclerosis via anti- hyperlipidemia, anti-inflammation and NF-κB signaling pathway in hyperlipidemic rabbits

Objective(s): Protosappanin A (PrA) is an effective and major ingredient of Caesalpinia sappan L. The current study was aimed to explore the effect of PrA on atherosclerosis (AS). Materials and Methods: Firstly, the experimental model of AS was established in rabbits by two-month feeding of high fat diet. Then, the rabbits were randomly divided into five groups and treated with continuous high ...

متن کامل

Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway.

Genistein (Gen) has been reported as a protective factor against breast cancer. However, the molecular mechanism by which Gen elicits its effects on triple-negative breast cancer cells has not been fully elucidated. In our study, the breast cancer cell line MDA-MB-231 was selected to determine the action of Gen on triple-negative breast cancer cells. MTT assay, flow cytometric analysis, siRNA t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2018